Unit 4: Functions

Lesson Outline

Big Picture

Students will:

- graph and transform sinusoidal functions using radian measure;
- identify domain, range, phase shift, period, amplitude, and vertical shift of sinusoidal functions using radian measure;
- develop equations of sinusoidal functions from graphs and descriptions expressed in radian measure;
- solve problems graphically that can be modelled using sinusoidal functions;
- prove trigonometric identities;
- solve linear and quadratic trigonometric equations using radian measure;
- make connections between graphic and algebraic representations of trigonometric relationships.

Day	Lesson Title	Math Learning Goals	Expectations
1	(lesson not included)	 Demonstrate an understanding of transformations of sine and cosine functions using radians. Sketch the graphs of transformations of the form y = sin(x)+c, y = cos(x)+c, y = sin(x-d), y = cos(x-d), y = sin(x-d)+c, y = cos(x-d)+c, y = a sin(x), y = a cos(x). 	B2.4, 2.5, 3.1
		• State the domain and range, phase shift, period, amplitude, vertical translation for transformations of sine and cosine functions using radians.	
		 Recognize equivalent trigonometric expressions, such as those involving horizontal translations, by considering the graphs. 	
2–3		• Demonstrate an understanding of transformations of sine and cosine functions using radians.	B2.4, 2.5, 3.1
	(lessons not included)	• Sketch the graphs of transformations of the form $y = \sin k(x)$, $y = \cos k(x)$, $y = \sin(kx)$, $y = \cos(kx)$, $y = \sin(kx - d)$, $y = \cos(kx - d)$.	
		• State the domain and range, phase shift, period, amplitude, and vertical translation for transformations of sine and cosine functions.	
		• Sketch graphs of $y = a \sin(k(x-d)) + c$ and $y = a \cos(k(x-d)) + c$ in radians.	
		• Recognize equivalent trigonometric expressions, such as those involving transformations by considering the graphs.	
4		• Determine an equation of a sinusoidal function given its graph or descriptions of its properties, in radians.	B2.6, 3.1
	(lesson not included)	• Recognize that more than one equation can be used to represent the graph of the function.	
5–6	(lessons not included)	• Pose and solve problems involving real world applications of sinusoidal functions in radians, given a graph or a graph generated with or without technology from its equations.	B2.7, 3.1

Day	Lesson Title	Math Learning Goals	Expectations
7	(lesson not included)	 Develop an understanding of compound angle formulae through exploration of numeric examples, and using technology. Use the formulae to determine the exact trigonometric ratios for special angles, e.g., sin(π/12). 	B3.1, 3.2
8	(lesson not included)	 Demonstrate an understanding that an identity holds true for any value of the independent variable (graph left side and right side of the equation as functions and compare). Apply a variety of techniques to prove identities. 	B3.3
9–10	(lessons not included)	 Solve linear and quadratic trigonometric equations with and without graphing technology, for real values in the domain from 0 to 2π. Make connections between graphical and algebraic solutions. 	B3.4
11- 12	Jazz		
13	Summative Assessment		